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Some Categorical Aspects of C-Spaces-I 
 

Santhosh P.K. 
 

Abstract. In this paper some simple categorical aspects of c-spaces are at- tempted.  

Separators and co-separators are  characterized. 

 

I. Introduction 
In  1983,  Reinhard  Börger  proposed  the  theory  of  connectivity  spaces,  which ruled out 

the shortfalls in the use of the  theory  of  connected  sets  in  practical cases. This concept generalized  

the  concept  of  connectedness  in  both  topology and graph theory.  He proved that the category of 

connectivity spaces Zus  over    Set  is a topological category which is not cartesian closed.   A 

systematic study      of this space was carried out by J. Serra[9] and further extended by H. J. A. M. 

Hejimans[3], C. Ronse [6] etc.  This space found profound applications in the areas  of Image 

Segmentation, Image Filtering, Image Coding, Digital Topology, Pattern Recognition, Mathematical 

Morphology etc [3, 4, 7, 8, 9]. An initiative towards the mathematical study of the structure of c-spaces 

can be found in [1, 2, 5]. In this  paper we attempt to give a concrete proof to some basic concepts that 

follows from the concept of Topological  Category. 

 

II. Preliminaries 
A c-space[5] is a set X together with a collection C of subsets such that the following properties hold. 

(1) φ ∈ C and {x} ∈ C for every x ∈ X. 

(ii)  If {Ci  : i ∈ I} be a non empty collection of subsets in C with 
i

∩
∈I

Ci  ƒ= φ, then Ci . 

i∈I 

Other terminologies used for c-spaces are connectivity space [1, 9] and integral con- nectivity space [2].  In 

his paper [1], Reinhard Börger have the same definition for the 

connectivity space except that empty set is connected.      The collection C of subsets 

X which satisfies (i) and (ii) is called a c-structure [5] or a connectivity class [3, 4, 9] 
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of X. We like to follow the terminology used in [5]. Elements of a c-structure are called connected sets. 

DX = {φ} ∪ {{x} : x ∈ X} is a c-structure on X, called the discrete c-structure 

and the space (X, DX ) is called the discrete c-space.  Also, IX  = P(X), the power 

set of X is a c-structure on X, called the indiscrete c-structure and the correspond- ing space is called 

an indiscrete c-space. The c-space (X, CX ) is denoted by X if there  is  no ambiguity. 

Let X  and Y  be two  c-spaces and f  :  X  → Y  be a function.   f  is called    c- 

continuous [5] or catenuous [5] or a connectivity morphism[3, 9] or a connectivity map[2], if it maps 

connected sets of X to connected sets of   Y . 

A function f : X → Y  is said to be a quotient map if Y  has the smallest c- 

structure with respect to which f is c-continuous. In this context, Y  is s said to be the quotient of X  

with respect to  f . 

All categorical terminologies are taken from the text book of Strecker[10]. For definitions, readers are 

requested to refer the    same. 

 

III. On some Basics of the Category of c-Spaces 
It can be noted that [1, 2] collection of c-spaces with c-continuous functions as morphisms 

forms a category. We  like to denote the category of c-spaces by  Cnc. By Mor(A, B), we mean the 

collection of c-continuous functions from A to B. It can be noted that Cnc is neither thin nor discrete 

and not small. 
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g 

−→ 

.

 

g 

Proposition 3.1. An object A is an initial object in Cnc if and only if it is the empty c-Space. 

Proof.  Let A be an initial object in Cnc .  Then |Mor(A, B)| = 1 for every c-space 

B.  If A ƒ= φ, then |Mor(A, B)| > 1 for every indiscrete c-space B with |B| > 1, a 

contradiction to the choice of A. Thus A = φ and hence A is an empty c-space. 

Conversely let A be an empty c-space. Since we can define exactly one function from empty set to 

any set, it is obvious that A is an initial object in Cnc . Q 

 

Proposition 3.2.  An object A is a terminal object in Cnc if and only if |A| = 1. 

Proof. Let A be a terminal object in Cnc . Then by the definition, |Mor(B, A)| = 1 for every c-space 

B. If |A| > 1, then |Mor(B, A)| > 1 for every discrete c-space B with |B| > 1, a contradiction to the 

choice of A. Hence |A| ≤ 1. Since A cannot be φ, we have |A| = 1. 

Conversely let A be a c-space with |A| = 1. Since |A| = 1, the only c-morphism from B to A is  the 

constant  map.   Hence  |Mor(B, A)| = 1 for every c-space   B. 

Thus A is a terminal object. Q 
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Corollary 3.3. Cnc has no zero objects. 

Proposition 3.4. In Cnc, the separators are precisely the nonempty c-spaces. 

f 

Proof.  Let the c-spaces A and B be such that A −
−

→
→  

B are distinct c-morphisms. 

Then  there  exists  a ∈ A such  that  f (a) ƒ= g(a).  Let  S be any  nonempty  c-space. Define h : S −→ A by 

h(x) = a, for all x ∈ S. Being a constant map, h is a c-morphism. It can be easily verified that (f ◦ h)(x) 

= f (a) and (g ◦ h)(x) = g(a) for all x ∈ S. Since f (a) ƒ= g(a), we have f ◦ g ƒ= g ◦ h. Hence S is a 

separator. Q 

Proposition 3.5. In Cnc , indiscrete spaces with at least two points is a co- separator. 

 

f 

Proof.  Let B −
−

→
→  

A be two morphisms such that f (b) ƒ= g(b) for some b ∈ B.  Let 

D be an indiscrete c-space with at least two elements c1  and c2. 

Define h : A D by h(x) = 
c1 if x = f (b)

 

c2 elsewhere 

Clearly h is a c-morphism with h ◦ f ƒ= h ◦ g.  Hence D is  a co-separator. Q 

Remark 3.6. The above condition is not necessary. 

 

Proof. Consider the c-space A and B where A = {a, b, c}, CA = DA∪{{a, b}, {b, c}, {a, b, c}}, B = {1, 2} and CB = 

DB ∪ {{1, 2}}. 

Define f : B → A as f (1) = a, f (2) = b and g : B → A as g(1) = b, g(2) = a. Here f and g are c-

morphisms such that f ƒ= g.  Choose a c-space E with E = 

{d, e, f } and CE = DE ∪ {{d, e}, {e, f }, {d, e, f }}. 

Define h : A → E as h(a) = d, h(b) = e and h(c) = f . Then h is a c-morphism with h ◦ f ƒ= h ◦ g. Hence 

E is a co-separator. But note that E is not an  indiscrete 

c-space. Q 

Theorem  3.7.  Let A, B ∈ Cnc with f, g ∈ Mor(B, A) with f ƒ= g.  Then X is 

a co-separator of f and g if and only if X contains the quotient space of A with respect to some c-morphism h ∈ 

Hom(A, X) with h ◦ f ƒ= h ◦ g. 

Proof. Let f, g ∈ Mor(B, A) with f ƒ= g. Let X be a co-separator of f and g. Then there exits a c-morphism h : 

A → X such that h◦f ƒ= h◦g.  Since h is a c-morphism, CX  should contain the c-structure CA
∗  =< {h(C) 

: C ∈ CA} >.  Obviously (h(A), CA
∗ ) 

is the quotient space of A with respect to h. 
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Conversely let X  contains the quotient space of A with  respect to some function       h : A → X with h ◦ f 

ƒ= h ◦ g. Then h is a c-morphism with h ◦ f ƒ= h ◦ g. Hence X is a co-separator of f   and g. Q 
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